43 research outputs found

    Do I need to fix a failed component now, or can I wait until tomorrow?

    Get PDF
    We investigate how predictive event-based modelling can inform operational decision making in complex systems with component failures. By relating the status of components to service availability, and using stochastic temporal logic reasoning, we quantify the risk of service failure now, and in the future, after a given elapsed time. Decisions can then be taken according to those risks. We demonstrate the approach through application to an industrial case study system in which component failures are sensed and monitored. The system has been deployed for some time. A novel aspect is we calibrate the model(s) according to inferences over historical field data, thus the results of our reasoning can inform decision making in the actual deployed system

    Towards a bigraphical encoding of actors

    Get PDF
    Actors are self-contained, concurrently interacting entities of a computing system. They can perform local computations, communicate via asynchronous message passing with other actors and can be dynamically created. Bigraphs are a fully graphical process algebraic formalism, capable of representing both the position in space of agents and their inter-connections. Their behaviour is specified by a set of reaction rules. In this paper, we present a bigraphical encoding of a simplified actor language with static topology. We express actor configurations in terms of sorted bigraphs while the rules of the actor operational semantics are encoded by bigraphical reactive rules

    Modelling IEEE 802.11 CSMA/CA RTS/CTS with stochastic bigraphs with sharing

    Get PDF
    Stochastic bigraphical reactive systems (SBRS) is a recent formalism for modelling systems that evolve in time and space. However, the underlying spatial model is based on sets of trees and thus cannot represent spatial locations that are shared among several entities in a simple or intuitive way. We adopt an extension of the formalism, SBRS with sharing, in which the topology is modelled by a directed acyclic graph structure. We give an overview of SBRS with sharing, we extend it with rule priorities, and then use it to develop a model of the 802.11 CSMA/CA RTS/CTS protocol with exponential backoff, for an arbitrary network topology with possibly overlapping signals. The model uses sharing to model overlapping connectedness areas, instantaneous prioritised rules for deterministic computations, and stochastic rules with exponential reaction rates to model constant and uniformly distributed timeouts and constant transmission times. Equivalence classes of model states modulo instantaneous reactions yield states in a CTMC that can be analysed using the model checker PRISM. We illustrate the model on a simple example wireless network with three overlapping signals and we present some example quantitative properties

    Stochastic model checking for predicting component failures and service availability

    Get PDF
    When a component fails in a critical communications service, how urgent is a repair? If we repair within 1 hour, 2 hours, or n hours, how does this affect the likelihood of service failure? Can a formal model support assessing the impact, prioritisation, and scheduling of repairs in the event of component failures, and forecasting of maintenance costs? These are some of the questions posed to us by a large organisation and here we report on our experience of developing a stochastic framework based on a discrete space model and temporal logic to answer them. We define and explore both standard steady-state and transient temporal logic properties concerning the likelihood of service failure within certain time bounds, forecasting maintenance costs, and we introduce a new concept of envelopes of behaviour that quantify the effect of the status of lower level components on service availability. The resulting model is highly parameterised and user interaction for experimentation is supported by a lightweight, web-based interface

    Bigraphs with sharing

    Get PDF
    Bigraphical Reactive Systems (BRS) were designed by Milner as a universal formalism for modelling systems that evolve in time, locality, co-locality and connectivity. But the underlying model of location (the place graph) is a forest, which means there is no straightforward representation of locations that can overlap or intersect. This occurs in many domains, for example in wireless signalling, social interactions and audio communications. Here, we define bigraphs with sharing, which solves this problem by an extension of the basic formalism: we define the place graph as a directed acyclic graph, thus allowing a natural representation of overlapping or intersecting locations. We give a complete presentation of the theory of bigraphs with sharing, including a categorical semantics, algebraic properties, and several essential procedures for computation: bigraph with sharing matching, a SAT encoding of matching, and checking a fragment of the logic BiLog. We show that matching is an instance of the NP-complete sub-graph isomorphism problem and our approach based on a SAT encoding is also efficient for standard bigraphs. We give an overview of BigraphER (Bigraph Evaluator & Rewriting), an efficient implementation of bigraphs with sharing that provides manipulation, simulation and visualisation. The matching engine is based on the SAT encoding of the matching algorithm. Examples from the 802.11 CSMA/CA RTS/CTS protocol and a network management support system illustrate the applicability of the new theory

    Towards a bigraphical encoding of actors

    Get PDF
    Actors are self-contained, concurrently interacting entities of a computing system. They can perform local computations, communicate via asynchronous message passing with other actors and can be dynamically created. Bigraphs are a fully graphical process algebraic formalism, capable of representing both the position in space of agents and their inter-connections. Their behaviour is specified by a set of reaction rules. In this paper, we present a bigraphical encoding of a simplified actor language with static topology. We express actor configurations in terms of sorted bigraphs while the rules of the actor operational semantics are encoded by bigraphical reactive rules

    Bigraphs with sharing and applications in wireless networks

    Get PDF
    Bigraphs are a fully graphical process algebraic formalism, capable of representing both the position in space of agents and their inter-connections. However, they assume a topology based on sets of trees and thus cannot represent spatial locations that are shared among several entities in a simple or intuitive way. This is a problem, because shared locations are often a requirement, for example, when modelling scenarios in the physical world or in modern complex computer systems such as wireless networks and spatial-aware applications in ubiquitous computing. We propose bigraphs with sharing, a generalisation of the original definition of bigraphs, to allow for overlapping topologies. The new locality model is based on directed acyclic graphs. We demonstrate the new formalism can be defined in the general framework of bigraphical theories and wide reactive systems, as originally devised by Robin Milner. We do so by defining a categorical interpretation of bigraphs with sharing, an axiomatisation derived from the equations of a bialgebra over finite ordinals, and a normal form to express bigraphical terms. We illustrate how sharing is essential for modelling overlapping localities by presenting two example case studies in the field of wireless networking. We show that bigraphs with sharing can be used realistically in a production environment by describing the implementation of an efficient matching algorithm and a software tool for the definition, simulation, visualisation and analysis of bigraphical reactive systems

    Modelling and Verification of Large-Scale Sensor Network Infrastructures

    Get PDF
    Large-scale wireless sensor networks (WSN) are increasingly deployed and an open question is how they can support multiple applications. Networks and sensing devices are typically heterogeneous and evolving: topologies change, nodes drop in and out of the network, and devices are reconfigured. The key question we address is how to verify that application requirements are met, individually and collectively, and can continue to be met, in the context of large-scale, evolving network and device configurations. We define a modelling and verification framework based on Bigraphical Reactive Systems (BRS) for modelling, with bigraph patterns and temporal logic properties for specifying application requirements. The bigraph diagrammatic notation provides an intuitive representation of concepts such as hierarchies, communication, events and spatial relationships, which are fundamental to WSNs. We demonstrate modelling and verification through a real-life urban environmental monitoring case-study. A novel contribution is automated online verification using BigraphER and replay of real-life sensed data streams and network events by the Cooja network simulator. Performance results for verification of two application properties running on a WSN with up to 200 nodes indicate our framework is capable of handling WSNs of that scale

    Fine-grained RNN with Transfer Learning for Energy Consumption Estimation on EVs

    Get PDF
    This work is supported by the Engineering and Physical Sciences Research Council, under PETRAS SRF grant MAGIC (EP/S035362/1) and the University of Glasgow Impact Acceleration Account.Peer reviewedPostprin

    BigraphTalk: verified design of IoT applications

    Get PDF
    Graphical IoT device management platforms, such as IoTtalk, make it easy to describe interactions between IoT devices. Applications are defined by dragging-and-dropping devices and specifying how they are connected, e.g. a door sensor controlling a light. While this allows simple and rapid development, it remains possible to specify unwanted device configurations – such as using the same device to drive a motor up and down simultaneously, risking damaging the motor. We propose , a verification framework for IoTtalk that utilizes formal techniques, based on bigraphs, to statically guarantee that unwanted configurations do not arise. In particular, we check for invalid connections between devices, as well as type errors, e.g. passing a float to a boolean switch. To the best of our knowledge, is the first platform to support the graphical specification of correct-by-design IoT applications. provides fully automated verification and feedback without end-users ever needing to specify a bigraph. This means any application, specifiable in IoTtalk, is guaranteed, so long as verification succeeds, not to violate the given configuration constraints when deployed; with no extra cost to the user
    corecore